## MPCZ-16EX 高速 Z80 CPU ボード

# 取扱説明書

## 目 次

| 項目                                               |   | ページ |
|--------------------------------------------------|---|-----|
| はじめに                                             |   | 3   |
| 1.概要                                             |   | 4   |
| 2.仕様                                             |   | 4   |
| 3.構成                                             |   | 5   |
| 4.実装図                                            |   | 5   |
| 5.ジャンパー, <b>DIP</b> スイッチ設定                       |   | 6   |
| 1) S1 DIP スイッチオフ° ション                            | 6 |     |
| 2) S2 ROM 容量、種類の設定                               | 6 |     |
| 3) S3 IRQ、ウオッチドッグタイマー、バグファインダーモードの設定             |   | 6   |
| 4) JP1 S-RAM 容量の設定                               |   | 7   |
| <b>5)JP2~JP9,JP11~JP14</b> パ ラレルポートプ ルアップ プ ルダウン |   | 7   |
| 6)バッテリーバックアップの設定                                 |   | 8   |
| 6.ブロック図                                          |   | 8   |
| 7.コネクタヒ <sup>®</sup> ンアサイン                       |   | 9   |
| コネクタ型番                                           |   | 1 2 |
| 8.信号名の説明                                         |   | 1 2 |
| 9.メモリーマップ                                        |   | 14  |
| 10. I/O アドレスマッピング                                |   | 1 5 |
| 11.プルアップ、プルダウンされている信号                            |   | 1 6 |
| 12.内蔵パラレルポート                                     |   | 1 7 |
| 13.RS232C 基本部                                    |   | 1 8 |
| 14.RS232C,RS422/RS485 オプション部                     |   | 1 9 |
| 1)RS232C                                         |   | 2 0 |
| 2)RS422/RS485                                    |   | 2 0 |

#### MPCZ-16EX

| 15.タイマーカウンター                 | 2 1 |
|------------------------------|-----|
| 16.割込み                       | 2 1 |
| 17.RTC カレンダークロック             | 2 3 |
| 18.外部パラレル I/O                | 2 4 |
| 19.AD コンバーター                 | 2 5 |
| 20.DA コンバーター                 | 2 6 |
| <b>21.DIP、LED</b> スイッチオフ°ション | 2 7 |
| 22.ウオッチドッグタイマー               | 2 8 |
| 付録                           |     |
| デバッガー用端子                     | 2 8 |
| ROMの挿入方法                     | 2 9 |
| MPCZ-16CPU と I /Oボードの結合      | 2 9 |
| 初めてお使いの方の為に基本設定サンプルプログラム     | 3 0 |
| ご使用上のお願い                     | 3 2 |

## 株式会社エンベデッドテクノロジー

最終更新日:2005年3月22日

#### はじめに

- 1. 製品の保証について
- ・無償修理

製品ご購入後1年間は無償で修理いたします。

(但し、下記「有償修理」に該当するものを除く)

- 有償修理
- 1)製品ご購入後1年を経過したもの。
- 2) 製品購入1年以内で故障の原因がお客様の取り扱い上のミスによるもの。
- 3) 製品購入1年以内で故障の原因がお客様の故意によるもの。

#### • 免責事項

当社製品の故障、不具合、誤動作あるいは停電によって生じた損害等の純粋経済損失 につきましては、当社は一切その責任を負いかねますので、あらかじめご了承くださ い。

#### 2. 製品について

- ・当社製品はカタログ仕様範囲内において、使用部品、回路図等、予告無く変更することが有ります。
- ・当社製品は部品メーカーの製造中止等によりやむを得ず製品の供給を続けることが 出来なくなることが有ります。
- ・当社製品の無断での複製を禁止します。
  - 3. カタログ、取扱説明書の記載事項について
- ・当社製品のカタログ及び取扱説明書は予告無く変更する場合があります。
- ・取扱説明書に記載されている内容及び回路図の一部又は全部を無断での転載、転用を禁止します。
- 4. 海外への輸出について
- ・当社製品を使用した機器を海外へ持ち出される場合、当社製品のCOCOMパラメーターシートが必要です。その都度お申しつけ頂ければパラメーターシートを発行いたします。
- 5. 本書に記載された使用条件の範囲内でご使用願います。

使用条件の範囲を超えたご使用の場合は本製品の保証は致しかねます。

MPCZ-16EX 高速CPUカード

#### 1. 概要

MPCZ-16EXは川崎製鉄社製KL5C80A16CFPチップを搭載した高速 CPUカードです。低価格、高速処理、省スペース、低消費電流を目指しました。 又、スタンバイ機能の利用で更に省電力を実現できます。

#### 2. 仕様

#### (基本部)

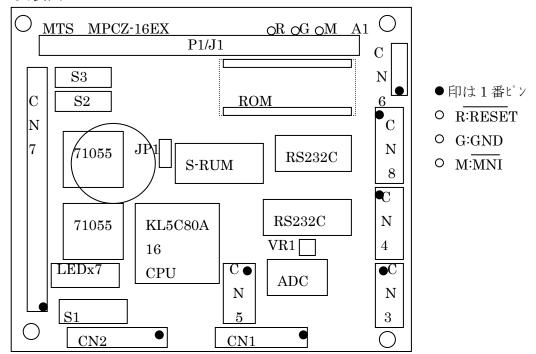
- 1) CPU : KL5C80A16
- 2) ROM : 32ピンソケット実装 (S-RAM、EPROM、FLASH-ROM 最大512KB)
- 3) SRAM: 32KB標準実装
- 4) バッテリーバックアップ : カレンダー、S-RAM (寿命 約7年) リチュウムハ・ッテリー容量: 600mAh 保持電流: SRAM(512KB) + RTC = 4μA (実測値)
- 5) パラレルポート: 2 4 ビット以上、KL5C80A16 内蔵ポート+  $\mu$  PD71055  $\mu$  PD71055 は全ビットプルアップ、又はプルダウン
- 6) シリアルポート: RS232C 1CH
- 7) タイマーカウンター: 4 CH、(KL 5 C 8 0 A 1 6 内蔵カウンタータイマー)
- 8) ウオッチドッグタイマー:1.6 秒タイムアウトカウンター、200m-sec リセット出力

#### (オプション部)

- 1) ADコンバータ: MAX1202、12 ビット8CHシリアルADC リファレンス(4,096V)内蔵、又は外部リファレンス2.5V~5V 入力レンジ:内臓 REF=0~4,096V、外部 REF=0~REF、又は±REF/2 変換速度:133KHz(MAX)
- 2) DA コンバータ: (最大 2CH) MAX539BESA 12 ビット 1CH シリアル DAC リファレンス付属、アナログ出力 0~5V(但し 0V~VCC-0.4V)
- 3) 増設S-RAM: 128KB又は512KB
- 4) RTC : カレンダークロック、ARM機能付(RTC63423A)
- 5) 増設シリアル I/0: R S 2 3 2 C (MAX233ACWP) 又は RS422/RS485 (SN65C1168ENS)
- 6) 増設パラレル I/0:  $\mu$  PD71055、24 ビットパラレル入出力(8255 互換) 全ポートプルアップ又はプルダウン
- 7) DIP スイッチ: 8ビット DIP スイッチ、デバッグ又は自己アドレス設定用
- 8) LED : 8ビット LED (デバッグ用)
- 9) 外部インターフェース:外部 I/0 増設インターフェース (PC104 バス)

#### (共通部)

- 1) クロック : 10MHz (OSC: 20MHz)
- 2) 開発環境:専用バグファインダー、リモートデバッガー、 インサーキットデバッガー、ROM-ICE
- 3) 使用温度範囲:0℃~50℃
- 4) 基板サイズ:90.1mm×95.8mm
- 5)動作電圧:5V単一動作(バス供給用±12V端子有り)
- 6)消費電流:50mA(基本構成無負荷動作時) 実測値(オプションは別) :40mA (基本構成スタンパイ時) 実測値(オプションは別)


## 3. 構成(基本部)

| 製品名           | 内容              |  |
|---------------|-----------------|--|
| MPCZ-16EX 基本部 | MPCZ-16EX       |  |
| SRAM          | 32KB            |  |
| パラレル I/O      | 24 ビット(8255 互換) |  |
| シリアルI/〇       | RS232C          |  |
| タイマーカウンター     | CPU 内蔵 4CH      |  |
| バッテリーバックアップ   | SRAM+RTC(オプション) |  |

## (オプション部)

| 製品名                  | 内容                     | 型番                | 電流値(MAX 値) |
|----------------------|------------------------|-------------------|------------|
| 外部インターフェース           | PC104 バス               | MPCZ-16EX-IF      | +150mA     |
| 512KB-SRAM           | HM628512               | MPCZ-16EX-SRAM512 | +10mA      |
| 12 t ット 8CH シリアル ADC | MAX1202                | MPCZ-16EX-AD12    | +1.5mA     |
| 12 t ット 1CH シリアル DAC | MAX539BESA             | MPCZ-16EX-DA12    | +1m/台      |
| 増設 RS422/RS485       | SN65C1168ENS           | MPCZ-16EX-RS422   | +150mA     |
| 增設 RS232C            | MAX233ACWP             | MPCZ-16EX-RS232   | +153mA     |
| リアルタイムクロック           | RTC63423A              | MPCZ-16EX-RTC     | +30 μ A    |
| 増設パラレルI/O            | $\mu~\mathrm{PD71055}$ | MPCZ-16EX-PIO     | +50 μ A    |
| 8BIT DIP スイッチ        |                        | MPCZ-16EX-DIP     | +10mA      |
| 8BIT LED             |                        | MPCZ-16EX-LED     | +21mA(全点灯) |

#### 4. 実装図



- 5. ジャンパー、DIP スイッチ設定
  - 1) S1: スイッチ入力データ

スイッチの内容をデーターとしてCPUに読み込むことが出来ます

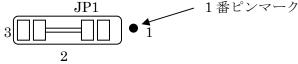
IOアドレス: 005Ch IN命令でディップスイッチS1の内容が読み込まれます

2) S 2: R O M ソケットのデバイス種類の設定

|     | : ROM |       | , ,   | .—,,, | —     |      |      |      |        | 1      |
|-----|-------|-------|-------|-------|-------|------|------|------|--------|--------|
| SW2 | EPROM | EPROM | EPROM | EPROM | EPROM | SRAM | SRAM | SRAM | FLASH  | FLASH  |
| ビット | 256K  | 512K  | 1M    | 2M    | 4M    | 256K | 1M   | 4M   | 29F010 | 29F040 |
| 1   | ON    | ON    | ON    | ON    | ON    | OFF  | OFF  | OFF  | ON     | ON     |
| 2   | OFF   | OFF   | OFF   | OFF   | OFF   | ON   | ON   | ON   | OFF    | OFF    |
| 3   | OFF   | ON    | ON    | ON    | ON    | OFF  | OFF  | OFF  | ON     | ON     |
| 4   | OFF   | OFF   | OFF   | OFF   | OFF   | ON   | ON   | ON   | OFF    | OFF    |
| 5   | OFF   | OFF   | OFF   | ON    | ON    | OFF  | OFF  | ON   | OFF    | ON     |
| 6   | ON    | ON    | OFF   | OFF   | OFF   | ON   | OFF  | OFF  | OFF    | OFF    |
| 7   | OFF   | OFF   | OFF   | OFF   | ON    | OFF  | OFF  | OFF  | OFF    | OFF    |
| 8   | OFF   | OFF   | OFF   | OFF   | OFF   | OFF  | ON   | ON   | OFF    | OFF    |
| 9   | OFF   | OFF   | OFF   | OFF   | OFF   | OFF  | OFF  | OFF  | ON     | ON     |
| 10  | OFF   | OFF   | OFF   | OFF   | OFF   | OFF  | OFF  | ON   | OFF    | ON     |

上記表以外の組み合わせではご使用にならないで下さい。

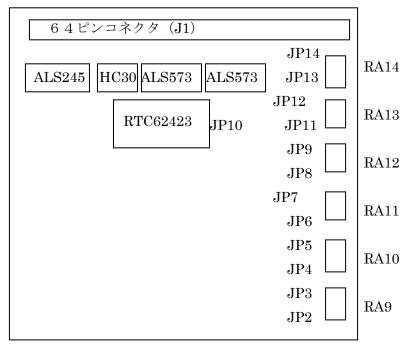
| 網掛け部は出荷時設定


#### 3) S 3 :

IRQ とバグファインダーモードの設定

|     | ·/ / / · l • . |       | <sup>3</sup> 7 队元                     |
|-----|----------------|-------|---------------------------------------|
| SW3 | CPU信           | 外部入   | 意味                                    |
| ピット | 号              | 力     |                                       |
| 1   | WDI            | DIPSW | スイッチオンでウオッチドッグタイマーが有効                 |
| 2   | BFMODE         | 無し    | バグファインダー使用時 ON、 通常 OFF                |
| 3   | IR0            | IRQ3  | 外部バス(P1/J1)の IRQ3 信号 ON で有効           |
| 4   | IR0            | PC10  | 外部 I/O 入力信号 PC10、 ON で有効 ビット 3 との重複禁止 |
| 5   | IR1            | IRQ4  | 外部バス(P1/J1)の IRQ4 信号 、 ON で有効         |
| 6   | IR1            | PC13  | 外部 I/O 入力信号 PC13、 ON で有効 ビット 5 との重複禁止 |
| 7   | IR14           | IRQ5  | 外部バス(P1/J1)の IRQ5 信号, ON で有効          |
| 8   | IR14           | *TINT | RTCの定周期割り込み、ONで有効 ビット7との重複禁止          |
| 9   | IR15           | IRQ7  | 外部バス(P1/J1)の IRQ7 信号, ON で有効          |
| 10  | IR15           | AINT  | RTC の日付時刻一致割込、ON で有効、ビット 9 との重複禁止     |

出荷時設定 ● 印 ON


#### 4) JP1 S-RAM容量の設定



| ジャンパーショート | S-RAM         |
|-----------|---------------|
| 1-2       | 256/512Kビット   |
| 2 - 3     | 1Mビット又は 4Mビット |

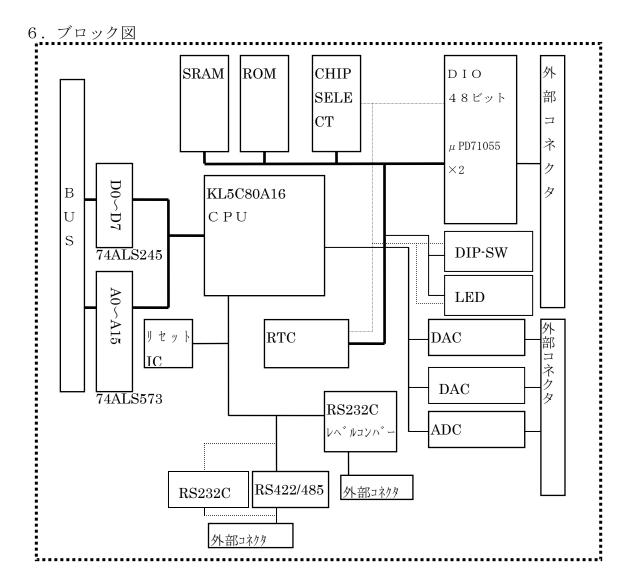
設定方法はパターンにハンダを盛り上げてショートします。 出荷時、搭載S-RAMに合わせて設定しております

基板裏面(ハンダ面)の配置図



5)JP2~JP14の設定 パラレル I / Oのプルアップ、プルダウン設定

|      | , , , , , , , , , , , , , , , , , , ,            | , , , , , – |
|------|--------------------------------------------------|-------------|
| JP   | 意味 (ショートで有効)                                     |             |
| 2    | パラレルポート入力 CN7の1~8番端子プルダウン                        | JP3 との重複禁止  |
| 3 •  | パラレルポート入力 CN7の 1~8 番端子プルアップ                      | JP2 との重複禁止  |
| 4    | パラレルポート入力 CN7の 9~16 番端子プルダウン                     | JP5 との重複禁止  |
| 5    | パラレルポート入力 CN7の 9~16番端子プルアップ                      | JP4 との重複禁止  |
| 6    | パラレルポート入力 CN7の 17~24番端子プルダウン                     | JP7 との重複禁止  |
| 7 •  | パラレルポート入力 CN7 の 17~24 番端子プルアップ                   | JP6 との重複禁止  |
| 8    | パラレルポート入力 $\mathrm{CN7}$ の $25{\sim}32$ 番端子プルダウン | JP9 との重複禁止  |
| 9 •  | パラレルポート入力 CN7の $25\sim32$ 番端子プルアップ               | JP8 との重複禁止  |
| 11   | パラレルポート入力 CN7 の $33\sim40$ 番端子プルダウン              | JP12 との重複禁止 |
| 12 • | パラレルポート入力 CN7 の $33\sim40$ 番端子プルアップ              | JP11 との重複禁止 |
| 13   | パラレルポート入力 CN7 の 41~48 番端子プルダウン                   | JP14 との重複禁止 |
| 14 • | パラレルポート入力 CN7の 41~48 番端子プルアップ                    | JP13 との重複禁止 |


設定方法はパターンにハンダを盛り上げてショートします。

#### ●印は出荷時設定

6) JP10 バッテリーバックアップの設定

| JP10 ショート ● | バッテリーを S-RAM、RTC(オプション)に供給 |
|-------------|----------------------------|
| JP10 オープン   | バッテリーをオープン                 |

出荷時はショート



7. コネクターピンアサインP1/J1 (外部ボードとのインターフェース信号)

| t°ン | 信号       | ピン  | 信号     |
|-----|----------|-----|--------|
| A01 | I/OCHK   | B01 | GND    |
| A02 | SD7      | B02 | RESET  |
| A03 | SD6      | B03 | +5V    |
| A04 | SD5      | B04 | IRQ9   |
| A05 | SD4      | B05 | -5V    |
| A06 | SD3      | B06 | DRQ2   |
| A07 | SD2      | B07 | -12V   |
| A08 | SD1      | B08 | ows    |
| A09 | SD0      | B09 | +12V   |
| A10 | I/OCHRDY | B10 | GND    |
| A11 | AEN      | B11 | *SMEMW |
| A12 | SA19     | B12 | *SMEMR |
| A13 | SA18     | B13 | *IOW   |
| A14 | SA17     | B14 | *IOR   |
| A15 | SA16     | B15 | *DACK3 |
| A16 | SA15     | B16 | DRQ3   |
| A17 | SA14     | B17 | *DACK1 |
| A18 | SA13     | B18 | DRQ1   |
| A19 | SA12     | B19 | *RFRSH |
| A20 | SA11     | B20 | CLK    |
| A21 | SA10     | B21 | IRQ7   |
| A22 | SA09     | B22 | IRQ6   |
| A23 | SA08     | B23 | IRQ5   |
| A24 | SA07     | B24 | IRQ4   |
| A25 | SA06     | B25 | IRQ3   |
| A26 | SA05     | B26 | *DACK2 |
| A27 | SA04     | B27 | T/C    |
| A28 | SA03     | B28 | BALE   |
| A29 | SA02     | B29 | +5V    |
| A30 | SA01     | B30 | OSC    |
| A31 | SA00     | B31 | GND    |
| A32 | GND      | B32 | GND    |

## C N 1

ADC、DAC用

|    | 7.11  |    |         |
|----|-------|----|---------|
| ピン | 信号    | ピン | 信号      |
| 1  | AIN0  | 2  | AGND1   |
| 3  | AIN1  | 4  | AGND1   |
| 5  | AIN2  | 6  | AGND1   |
| 7  | AIN3  | 8  | AGND1   |
| 9  | AIN4  | 10 | AGND1   |
| 11 | AIN5  | 12 | AGND1   |
| 13 | AIN6  | 14 | AGND1   |
| 15 | AIN7  | 16 | AGND1   |
| 17 | AOUT1 | 18 | AGND2   |
| 19 | AOUT2 | 20 | EXT-REF |

## CN2

タイマーカウンター用

| ピン | 信号    | ピン | 信号   |
|----|-------|----|------|
| 1  | GATE0 | 2  | OUT0 |
| 3  | GATE1 | 4  | OUT1 |
| 5  | GATE2 | 6  | OUT2 |
| 7  | GATE3 | 8  | OUT3 |
| 9  | P17   | 10 | P24  |
| 11 | ALM   | 12 | GND  |
| 13 | IR0   | 14 | GND  |
| 15 | IR1   | 16 | GND  |

#### C N 3

A/D コンバータ外部リファレンス

| AD - | ノハニクグト目ロリノテレンへ |
|------|----------------|
| ピン   | 信号             |
| 1    | VCC +5V        |
| 2    | REFADJ         |
| 3    | REF            |
| 4    | GND            |

## CN4

RS232C インターフェース

| ピン | 信号  | ピン | 信号  |
|----|-----|----|-----|
| 1  | DCD | 2  | RD  |
| 3  | TD  | 4  | DTR |
| 5  | GND | 6  | DSR |
| 7  | RTS | 8  | CTS |
| 9  | RI  | 10 | NC  |

## CN5

CPU内蔵パラレルI/O

|  | ピック   | 信号          |
|--|-------|-------------|
|  | 1     | P11         |
|  | 2     | P12         |
|  | 3     | P13         |
|  | 4     | GND         |
|  | 1 2 3 | P11 P12 P13 |

## C N 6

| <b>-</b> - · | •     |
|--------------|-------|
| ピン           | 信号    |
| 1            | CLK   |
| 2            | GND   |
| 3            | BFSIO |

| CN7 |          |    |      |  |  |
|-----|----------|----|------|--|--|
| パラレ | パラレルポート用 |    |      |  |  |
| ピン  | 信号       | ピン | 信号   |  |  |
| 1   | PA00     | 2  | PA01 |  |  |
| 3   | PA02     | 4  | PA03 |  |  |
| 5   | PA04     | 6  | PA05 |  |  |
| 7   | PA06     | 8  | PA07 |  |  |
| 9   | PB00     | 10 | PB01 |  |  |
| 11  | PB02     | 12 | PB03 |  |  |
| 13  | PB04     | 14 | PB05 |  |  |
| 15  | PB06     | 16 | PB07 |  |  |
| 17  | PC00     | 18 | PC01 |  |  |
| 19  | PC02     | 20 | PC03 |  |  |
| 21  | PC04     | 22 | PC05 |  |  |
| 23  | PC06     | 24 | PC07 |  |  |
| 25  | PA10     | 26 | PA11 |  |  |
| 27  | PA12     | 28 | PA13 |  |  |
| 29  | PA14     | 30 | PA15 |  |  |
| 31  | PA16     | 32 | PA17 |  |  |
| 33  | PB10     | 34 | PB11 |  |  |
| 35  | PB12     | 36 | PB13 |  |  |
| 37  | PB14     | 38 | PB15 |  |  |
| 39  | PB16     | 40 | PB17 |  |  |
| 41  | PC10     | 42 | PC11 |  |  |
| 43  | PC12     | 44 | PC13 |  |  |
| 45  | PC14     | 46 | PC15 |  |  |
| 47  | PC16     | 48 | PC17 |  |  |
| 49  | GND      | 50 | VCC  |  |  |

| C N 8      |                  |  |  |  |
|------------|------------------|--|--|--|
| RS42       | 2/RS485 インターフェース |  |  |  |
| ピン         | 信号               |  |  |  |
| 1          | ТХ-              |  |  |  |
| 2          | RX+ (RXD0)       |  |  |  |
| 3          | TX+ (TXD0)       |  |  |  |
| 4          | RX-              |  |  |  |
| 5          | GND              |  |  |  |
| 6          | RTS-             |  |  |  |
| 7          | RTS+ (RTS0)      |  |  |  |
| 8          | CTS+ (CTS0)      |  |  |  |
| 9          | CTS-             |  |  |  |
| 10         |                  |  |  |  |
| ()内はRS232C |                  |  |  |  |
| オプション      |                  |  |  |  |

| CN9 |      |  |
|-----|------|--|
| 電源コ | ネクタ  |  |
| ピン  | 信号   |  |
| 1   | +5V  |  |
| 2   | +5V  |  |
| 3   | +12V |  |
| 4   | -12V |  |
| 5   | GND  |  |
| 6   | GND  |  |

| テストポイント |                           |  |
|---------|---------------------------|--|
| 端子名     | 信号                        |  |
| GND     | GND                       |  |
| NMI     | $\overline{\mathrm{NMI}}$ |  |
| RST     | RESET                     |  |
|         |                           |  |

信号を使用する時は R3(1Eh)D7=1,D6=0 セット

PA00~PA07, PB00~PB07, PC00~PC07: 基本部 PA10~PA17, PB10~PB17, PC10~PC17: オプション部

コネクタピン配置 (例:オムロン XG4C シリーズ 10 ピンコネクタ)

## MPCZ-16EX

## コネクタ型番

| コネクタ番号 | 基板側コネクタ       | ケーフ゛ル側コネクタ             | 備考              |
|--------|---------------|------------------------|-----------------|
| CN1    | XG4C2031 オムロン | XG4M2030               | 商品に添付しております     |
| CN2    | XG4C1631 オムロン | XG4M1630               | IJ              |
| CN3    | B4B-PH-SM 日圧  | PHR-4 (SPH-002T-P0.5S) | IJ              |
| CN4    | XG4C-1031     | XG4M1030               | IJ              |
| CN5    | B4B-PH-SM 日圧  | PHR-4 (SPH-002T-P0.5S) |                 |
| CN6    | XG8V-0331     | クリップ用                  |                 |
| CN7    | XG4C-5031     | XG4M5030               | 商品に添付しております     |
| CN8    | XG4C-1034     | XG4M1030               | IJ              |
| CN9    | B6B-XH-K-S 日圧 | XHP-6 (SXH-001T-P0.6)  | 〃 (0.5m ケーフ゛ル付) |

## 8. 信号名の説明

| 信号名             | 意味                                   |        |
|-----------------|--------------------------------------|--------|
| CN1-AINO~AIN7   | A/D コンバータのアナログ入力信号 0~7 オプション         | IN     |
| CN1-AGND1       | A/D コンハ゛ータのグ ラント゛信号 オプション            | GND    |
| CN1-AOUT1~2     | D/A コンバータのアナログ出力信号 1~2 オプション         | OUT    |
| CN1-AGND2       | D/A コンバータのグランド信号 オプション               | GND    |
| CN1-EXTREF      | D/A コンバータ外部リファレンス電源入力(D1 を取り外す)      | IN     |
| CN2−GATE0∼GATE3 | タイマーカウンターのゲート入力信号 0~3、PIO としても使用可    | IN     |
| CN2-OUT0~OUT3   | タイマーカウンターのカウンター出力信号 0~3、PIO としても使用可  | OUT    |
| CN2-P17         | CPU 内蔵パラレル I/O の P17 ビット PIO として使用可  | IN/OUT |
| CN2-P24         | CPU 内蔵パラレル I/O の P17 ビット PIO として使用可  | IN/OUT |
| CN2-ALM         | RTCのALM信号、日付時間一致でオープ ンコレクタ ON オプ ション | OUT    |
| CN2-IRO         | CPUの IRO 割込み信号、PIO としても使用可           | IN     |
| CN2-IR1         | CPUの IR1 割込み信号、PIO としても使用可           | IN     |
| CN2-GND         | グランド信号                               | GND    |
| CN3-1 VCC       | CPU の+5V 電源                          | OUT    |
| CN3-2 REFADJ    | A/D コンバーター用リファレンスアジャスト信号 オプション       | IN     |
| CN3-3 REF       | A/D コンバーター用外部リファレンス電源 オプション          | IN     |
| CN3-4 GND       | A/D コンバーター外部リファレンス用 GND オプション        | GND    |
| CN4-DCD         | RS232C、CD 検出信号 CD                    | IN     |
| CN4-RD          | RS232C、レシーフ゛データ信号 RD                 | IN     |
| CN4-TD          | RS232C、トランスファデータ信号 SD                | OUT    |
| CN4-DTR         | RS232C、データートランスファレディ ER              | OUT    |

| CN4-DSR       | RS232C、デ゛ーターセットレテ゛ィ DR              | IN     |
|---------------|-------------------------------------|--------|
| CN4-RTS       | RS232C、リクエストツーセント RS                | OUT    |
| CN4-CTS       | RS232C、クリアーツーセント CS                 | IN     |
| CN4-RI        | RS232C、リンク゛インシ゛ケータ CI               | IN     |
| CN5-P11       | CPU 内蔵パラレル I/O の P11 ビット PIO として使用可 | IN/OUT |
| CN5-P12       | CPU 内蔵パラレル I/O の P12 ビット PIO として使用可 | IN/OUT |
| CN5-P13       | CPU 内蔵パラレル I/O の P13 ビット PIO として使用可 | IN/OUT |
| CN6-CLK       | バグファインダー用クロック信号                     | OUT    |
| CN6-BFSI0     | バグファインダー用シリアル信号                     | OUT    |
| CN7-PA00~PA07 | 外部パラレル I/0 入出力信号 基本部                | IN/OUT |
| CN7−PB00∼PB07 | 外部パラレル I/0 入出力信号 基本部                | IN/OUT |
| CN7-PC00~PC07 | 外部パラレル I/0 入出力信号 基本部                | IN/OUT |
| CN7-PA10~PA17 | 外部パラレル I/0 入出力信号 オプション              | IN/OUT |
| CN7−PB10∼PB17 | 外部パラレル I/0 入出力信号 オプション              | IN/OUT |
| CN7-PC10~PC17 | 外部パラレル I/0 入出力信号 オプション              | IN/OUT |
| CN8-TX-       | RS422/485 トランスファデータ (ー) オプション       | OUT    |
| CN8-TX+       | RS422/485 トランスファデータ (+) オプション       | OUT    |
| CN8-RX-       | RS422/485 レシーブデータ(ー) オプション          | IN     |
| CN8-RX+       | RS422/485 レシーブデータ (+) オプション         | IN     |
| CN8-RTS-      | RS422/485 リクエストツーセント゛ (-) オプション     | OUT    |
| CN8-RTS+      | RS422/485 リクエストツーセンド (+) オプション      | OUT    |
| CN8-CTS-      | RS422/485 クリアーツーセンド (-) オプション       | IN     |
| CN8-CTS+      | RS422/485 クリアーツーセンド (+) オプション       | IN     |
| CN8-RXD0      | RS232C レシーブデータ オプション                | IN     |
| CN8-TXD0      | RS232C トランスファデータ オプション              | OUT    |
| CN8-RTS0      | RS242C リクエストツーセント オプション             | OUT    |
| CN8-CTS0      | RS232C クリアーツーセンド オプション              | IN     |
| CN9- +5V      | 電源入力 +5V ±5%                        | IN     |
| CN9- +5V      | 電源入力 +5V ±5%                        | IN     |
| CN9- +12V     | 電源入力 +12V (MPCZ-16EX では未使用)外部ボード用   | IN     |
| CN912V        | 電源入力 -12V (MPCZ-16EX では未使用)外部ボード用   | IN     |
| CN9-GND       | 電源用グランド                             | GND    |

| 9. メ   | モリーマップ |       |           |
|--------|--------|-------|-----------|
| 論理アドレス |        | リセッ   | ト直後物理アドレス |
| 00000h | ROM領域  | 0000h | ROM領域     |
|        |        | FFFFh |           |
| 80000h | RAM領域  |       |           |
|        |        |       |           |

例

リセット直後の状態で ベースレジスタ B1, B2, B3="3Fh" B4="1Fh"

と設定した場合の物理アドレス

| 0000h | ROM 領域 | 実装メモリーの領域外のアドレスは |
|-------|--------|------------------|
| 7FFFh |        | シャドーとしてアクセスできます。 |
| 8000h | RAM領域  |                  |
| FFFFh |        |                  |

詳しくは添付の

KL5C8OA16CFP ハードウエアマニュアル (赤い表紙の本)の 5章、KC82CPU、及びアプリケーションノートをご参照下さい。

## 10. I/Oアドレスマッピング

| アト゛レス | 内容                           |                                |               |  |  |  |
|-------|------------------------------|--------------------------------|---------------|--|--|--|
| 00h   | KL5C80A16CFP 内蔵 I/0          |                                |               |  |  |  |
| ~     |                              |                                |               |  |  |  |
| 3Fh   | 詳細は                          |                                |               |  |  |  |
|       | KL5C80A16CFP ハート ウェアマニュアル(赤い | KL5C80A16CFP ハードウエアマニュアル(赤い表紙) |               |  |  |  |
|       | の 13 章、アドレスマッピング 13-1、       | 13-2 を                         |               |  |  |  |
|       | ご参照下さい                       |                                |               |  |  |  |
|       |                              | BANK 0                         | BANK1         |  |  |  |
| 0040h | RTC カレンタ゛ークロック               | 1 秒桁レジスタ                       | 1秒桁レジスタ       |  |  |  |
| 0041h | RTC カレンタ゛ークロック               | 10 秒桁レジスタ                      | 10 秒桁レジスタ     |  |  |  |
| 0042h | RTC カレンタ゛ークロック               | 1分析レジスタ                        | 1分析レジスタ       |  |  |  |
| 0043h | RTC カレンタ゛ークロック               | 10 分析レジスタ                      | 10 分桁レジスタ     |  |  |  |
| 0044h | RTC カレンタ゛ークロック               | 1 時桁レジスタ                       | 1時桁レジスタ       |  |  |  |
| 0045h | RTC カレンタ゛ークロック               | 10 時桁レジスタ                      | 10 時桁レジスタ     |  |  |  |
| 0046h | RTC カレンタ゛ークロック               | 1 日桁レジスタ                       | 1日桁レジスタ       |  |  |  |
| 0047h | RTC カレンタ゛ークロック               | 10 日桁レジスタ                      | 10 日桁レジスタ     |  |  |  |
| 0048h | RTC カレンタ゛ークロック               | 1月桁レジスタ                        | 1月桁レジスタ       |  |  |  |
| 0049h | RTC カレンタ゛ークロック               | 10月桁レジスタ                       | 10 月桁レジスタ     |  |  |  |
| 004Ah | RTC カレンタ゛ークロック               | 1 年桁レジスタ                       | 曜日レジスタ        |  |  |  |
| 004Bh | RTC カレンタ゛ークロック               | 10 年桁レジスタ                      | 指定範囲レジスタ      |  |  |  |
| 004Ch | RTC カレンタ゛ークロック               | 曜日レジスタ                         | テストレジスタ       |  |  |  |
| 004Dh | RTC カレンタ゛ークロック               | コントロールレシ゛スタ D                  | コントロールレシ、スタ D |  |  |  |
| 004Eh | RTC カレンタ゛ークロック               | コントロールレシ、スタ E                  | コントロールレシ、スタ E |  |  |  |
| 004Fh | RTC カレンタ゛ークロック               | コントロールレシ、スタ F                  | コントロールレシ、スタ F |  |  |  |
|       |                              | リード時                           | ライト時          |  |  |  |
| 0050h | パラレル I/0 基本部                 | PAO~PA7 データ                    | PAO~PA7 データ   |  |  |  |
| 0051h | パラレル I/0 基本部                 | PBO~PB7 データ                    | PBO~PB7 データ   |  |  |  |
| 0052h | パラレル I/0 基本部                 | PCO~PC7 データ                    | PCO~PC7 データ   |  |  |  |
| 0053h | パラレル I/0 基本部                 |                                | コントロールレシ、スタ   |  |  |  |
| 0054h | 空き                           |                                |               |  |  |  |
| 0055h | 空き                           |                                |               |  |  |  |
| 0056h | 空き                           |                                |               |  |  |  |
| 0057h | 空き                           |                                |               |  |  |  |
| 0058h | パラレル I/O オプション部              | PAO~PA7 データ                    | PAO~PA7 データ   |  |  |  |

| 0059h | パラレル I/O オプション部    | PBO~PB7 データ | PB0~PB7 データ |
|-------|--------------------|-------------|-------------|
| 005Ah | パラレル I/0 オプション部    | PCO~PC7 データ | PCO~PC7 データ |
| 005Bh | パラレル I/0 オプション部    |             | コントロールレジ、スタ |
| 005Ch | DIP-SW/LED オプション   | DIP-SW データ  | LED データ     |
| 005Dh | 空き                 |             |             |
| 005Eh | 空き                 |             |             |
| 005Fh | 空き                 |             |             |
| 0060h | 空き                 |             |             |
| ~     | 外部増設I/O用           |             |             |
| FFFFh | (xx00h~xx3Fh は使用禁止 |             |             |

注)  $0040h\sim005$ Fh の I/0 アドレスは 16 ビットデコードしております。

したがって OUT 40h, A のような命令ではアクセスできません。

LD BC, 0040h

OUT (C), A

と言うような命令をご使用下さい。

16 ビットアドレス指定でも xx00h~xx3Fh は使用できません (CPU が内部 I/O と判断して、外部に IORD, IOWR 信号を出さない為)

11. プルアップ、プルダウンされている信号

| 信号名    | 抵抗値 | プ゜ルアップ゜ /フ゜ ルタ゛ウン | コネクタ名 |
|--------|-----|-------------------|-------|
| DREQ1  | 10K | プルアップ             | J1    |
| *IORD  | 10K | プルアップ             |       |
| *IOWR  | 10K | プルアップ             |       |
| *WAIT  | 10K | プルアップ             |       |
| *RESET | 10K | プルアップ             | TP4   |
| *NMI   | 10K | プルアップ             |       |
| P11    | 10K | プルアップ             | CN3   |
| P12    | 10K | プルアップ             | CN3   |
| P13    | 10K | プルアップ             | CN3   |
| P17    | 10K | プルアップ             | CN2   |
| P24    | 10K | プルアップ             | CN2   |
| GATE0  | 10K | プルアップ             | CN2   |
| GATE1  | 10K | プルアップ             | CN2   |
| GATE2  | 10K | プルアップ             | CN2   |
| GATE3  | 10K | プルアップ             | CN2   |
| IR0    | 10K | プルアップ             | CN2   |

| IR1       | 10K | プルアップ           | CN2 |
|-----------|-----|-----------------|-----|
| IR14      | 10K | プルアップ           |     |
| IR15      | 10K | プルアップ           |     |
| *TINT     | 10K | プルアップ           |     |
| ARM       | 10K | プルアップ           | CN2 |
| RP14      | 10K | プルアップ           |     |
| RP15      | 10K | プルアップ           |     |
| RP17      | 10K | プルアップ           |     |
| RP18      | 10K | プルアップ           |     |
| VPP       | 10K | プルアップ           |     |
| *RST      | 10K | プルアップ           |     |
| PA00~PA07 | 10K | プルアップ or プルダウン  | CN7 |
| PB00∼PB07 | 10K | プルアップ or プルダウン  | CN7 |
| PC00~PC07 | 10K | プ゚ルアップ゜or プルダウン | CN7 |
| PA10~PA17 | 10K | プルアップ or プルダウン  | CN7 |
| PB10∼PB17 | 10K | プルアップ or プルダウン  | CN7 |
| PC10~PC17 | 10K | プルアップ or プルダウン  | CN7 |

## 12. 内蔵パラレルポート

## CPU内蔵パラレルポートは他の機能と重複して使用されます

| ハ。ラレル | 他の機能                     | 他の機能               | IN/OU | 外部端   |
|-------|--------------------------|--------------------|-------|-------|
| ポート   |                          |                    | T     | 子     |
| P00   | *SCSO: ADC, DAC チップ セレクト |                    | OUT   |       |
| P01   | CTC-OUT1 :カウンタ出力 1       |                    | OUT   | CN2-4 |
| P02   | CTC-OUT2 :カウンタ出力 2       |                    | OUT   | CN2-6 |
| P03   | CTC-OUT3 :カウンタ出力 3       |                    | OUT   | CN2-8 |
| P04   | CTC-GATEO:カウンタケ゛ート O     | TRXCO:UARTO 外部クロック | IN    | CN2-1 |
| P05   | CTC-GATE1:カウンタケ゛ート 1     | TRXC1:UART1 外部クロック | IN    | CN2-3 |
| P06   | CTC-GATE2:カウンタケ゛ート 2     |                    | IN    | CN2-5 |
| P07   | CTC-GATE3:カウンタケ゛ート3      |                    | IN    | CN2-7 |
| P10   | SCK1 :シリアルクロック出力         |                    | I/0   |       |
| P11   |                          |                    | I/0   | CN5-1 |
| P12   |                          |                    | I/0   | CN5-2 |
| P13   |                          |                    | I/0   | CN5-3 |
| P14   | DCD1 :RS232C CD 検出       |                    | I/0   |       |
| P15   | RI1 :RS232C RING 検出      |                    | I/0   |       |

#### MPCZ-16EX

| P16 | DACK1:DMA 要求 ACK        | I/0 |        |
|-----|-------------------------|-----|--------|
| P17 |                         | I/0 | CN2-9  |
| P20 | IRO :割込み信号 0            | I/0 | CN2-13 |
| P21 | IR1 :割込み信号 1            | I/0 | CN2-15 |
| P22 | IR14:割込み信号14            | I/0 |        |
| P23 | IR15:割込み信号 15           | I/0 |        |
| P24 | DREQO:DMA 要求信号          | I/0 | CN2-10 |
| P25 | DREQ1:DMA 要求信号          | I/0 |        |
| P26 | TXE0:RS422/485 送信イネーブル  | I/0 |        |
| P27 | *NMI : ノンマスカフ゛ルインターラフ゜ト | I/0 |        |
| P30 | DTR1 :RS232C            | I/0 |        |
| P31 | RTS1 :RS232C            | I/0 |        |
| P32 | TXD1 :RS232C            | I/0 |        |
| P33 | TXS1 :RS232C            | I/0 |        |
| P34 | DSR1 :RS232C            | I/0 |        |
| P35 | CTS1 :RS232C            | I/0 |        |
| P36 | RXD1 :RS232C            | I/0 |        |
| P37 | TXE1 :RS232C イネーブ゛ル     | I/0 |        |

#### 13. RS232C基本部(UART CH1)

| I/0アドレス | READ 時              | WRITE 時                |
|---------|---------------------|------------------------|
| 28h     |                     | RATE 設定                |
| 2Ch     | チャネル1 送信データ         | チャネル1受信データ/拡張ステータス A   |
| 2Dh     | チャネル 1 モート・ / コマント・ | チャネル 1 ステータス/拡張ステータス B |

## ◎UART CH1を使用する為の基本設定

SCR2 ("1Dh") の設定 通常 "3xh"

UART の信号は内蔵 PIO と共用している為、ここで宣言します

| ビット   | 内容                                                                |
|-------|-------------------------------------------------------------------|
| D0    | UART CH1 とは無関係                                                    |
| D1    | UART CH1 とは無関係                                                    |
| D2    | UART CH1 とは無関係                                                    |
| D3    | UART CH1 とは無関係                                                    |
| D4:D5 | =11: DTR1, RTS1, TXD1, CTS1, DSR1, を有効 P30, P31, P32, P34, P35 無効 |
| D6=0  | P14 を有効、RXRDY1 を無効(DCD 信号として使用)                                   |
| D7=0  | P15 を有効、TXRDY1 を無効(RI 信号として使用)                                    |

UART CH1 で使用する信号の方向性の設定

| PIO 信号 | 信号   | 設定方向 | 備考              |
|--------|------|------|-----------------|
| P14    | DCD  | IN   |                 |
| P15    | RI   | IN   |                 |
| P30    | DTR1 |      | SCR2 で自動的に決定される |
| P31    | RTS1 |      | SCR2 で自動的に決定される |
| P32    | TXD1 |      | SCR2 で自動的に決定される |
| P33    | TXS1 | 出力   |                 |
| P34    | DSR1 | 入力   |                 |
| P35    | CTS1 | 入力   |                 |
| P36    | RXD1 | 入力   |                 |
| P37    | TXE1 | 出力   |                 |

P14、P15の方向性を入力に設定します

3Bh に xx00xxxx を書き込みます (1=出力、0=入力) (x は UART CH1 では未使用)

P30~P37 の方向性の設定方法

IOアドレス 3Fh 番地に上記の値を書き込みます。

3Fh に 10001xxx を書き込みます。

RS232C基本部のシャットダウンモードを解除します。

39h 番地に 00111111 をtylします

P37(TXE1)を"1"にセットし RS232C の\*SHDN を"HI"にします。

以上の設定でUART CH1は準備完了です。

詳細はKL5C80A16CFP ハードウエアマニュアル (赤い表紙) を参照下さい。又、プログラム手法につきましてはサンプルプログラムをご参考下さい。

#### 14. RS232C/RS422/RS485 (UART CHO) オプション部

| I/0アドレス | READ 時            | WRITE 時                |
|---------|-------------------|------------------------|
| 28h     |                   | RATE 設定                |
| 2Ah     | チャネル 0 送信データ      | チャネル1受信データ/拡張ステータス A   |
| 2Bh     | チャネル 〇 モート・/コマント・ | チャネル 1 ステータス/拡張ステータス B |

#### 1) RS232C

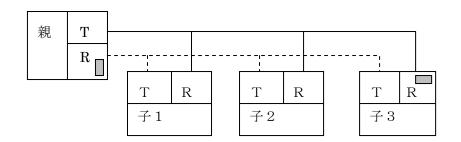
オプション側UARTの基本設定項目は不要です。 オプション側UARTの信号は基本側と違って信号本数が少なくなって おります。

CN8-2:RXD0 CN8-3:TXD0 CN8-7:\*RTS0 CN8-8:\*CTS0

#### 2) RS422/RS485

RS422/RS485にはTXE0(トランスファイネーブル)信号によってデーターラインを受信状態(ハイインピーダンス)にすることができます。(RS422(P-P接続)では常時"1"で使用できます)この信号の制御はCPU内蔵パラレルポートP26によって行います。 TXE0=1 送信状態 TXD0と RTS0には常時信号が出力される。 TXE0=0 受信状態 TXD0と RTS0 はハイインピーグ・グンス

#### INIT (初期設定)


ポート2の方向性レジスタ 3Dh に"x1xxxxxx"をセットします。

#### START (使用時)

ポート2のデータレジスタにTXE0の"1"又は"0"を書き込みます

T X E O = "1" 39h=00101101  $t^{\circ} - 12 Ot^{\circ} + 6 E''1"$ 

TXE 0 = "0" 39h=00101100 ポート2のピット6を"0"



T=送信 R=受信 ■ 終端抵抗

上図で親は常時 TXE0="1"で良い

子  $1\sim$ 子 3 は親から自機宛ての送信要求の時のみ TXE0=''1''にし、送信が終わったら TXE0=''0''にする。

#### 終端抵抗の処理

上図中の親と子3に終端抵抗を実装する。(出荷時実装されています) 子1、子2の終端抵抗は取り外す。(基板裏面のR5、R14) 抵抗チップ全体をハンダゴテで暖めて取り外します。 プログラミング手法はRS232C基本と同様です。 KL5C80A16CFPハードウエアマニュアル(赤い表紙)及びサンプル プログラムをご参照下さい。

#### 15. カウンタータイマ

| I/Oアドレス | WRITE 時           | READ 時           | 備考 |
|---------|-------------------|------------------|----|
| 20h     | チャネル O カウンターテ゛ータ  | チャネル O カウンターテ゛ータ |    |
| 21h     | チャネル 0 コントロールワート゛ | チャネル O ステータス     |    |
| 22h     | チャネル 1 カウンターデ・ータ  | チャネル 1 カウンターテ゛ータ |    |
| 23h     | チャネル 1 コントロールワート  | チャネル 1 ステータス     |    |
| 24h     | チャネル 2 カウンターテ゛ータ  | チャネル 2 カウンターテ゛ータ |    |
| 25h     | チャネル 2 コントロールワート  | チャネル 2 ステータス     |    |
| 26h     | チャネル 3 カウンターテ゛ータ  | チャネル 3 カウンターテ゛ータ |    |
| 27h     | チャネル 3 コントロールワート  | チャネル 3 ステータス     |    |

タイマーカウンターの初期化はSCR4にて行います。

#### SCR4 の設定

外部コネクタ CN2-4, CN2-6, CN2-8 をそれぞれ CTC-OUT1, CTC-OUT2, CTC-OUT3 として使用する場合。 SCR4:xxxx0x11 に設定します。 (x は CTC と無関係) プログラミングについては、K L 5 C 8 O A 1 6 C F Pハードウエアマニュアル、9 章. タイマ/カウンタ、及びサンプルプログラムをご参照下さい。

#### 16. 割込み

| IR   | 割込み信号                               |
|------|-------------------------------------|
| IR15 | 外部端子 J1-B21 IRQ7 又は RTC-ALM(日付時間一致) |
| IR14 | 外部端子 J1-B23 IRQ5 又はRTC-TINT(定周期信号)  |
| IR13 | タイマーカウンター チャネル 1 割込み                |
| IR12 | タイマーカウンター チャネル 0 割込み                |
| IR11 | UARTO ブレーク検出/エラー検出                  |
| IR10 | UARTO RXRDYO(受信レディ)                 |
| IR9  | UARTO TXRDYO(送信レディ)                 |
| IR8  | クロック同期シリアル I/O チャネル O 送受信完了         |
| IR7  | DMA コントローラ DMTC1                    |
| IR6  | DMA コントローラ DMTCO                    |
| IR5  | UART1 ブレーク信号検出/エラー検出                |
| IR4  | UART1 RXRDY1(受信レディ)                 |

| IR3 | UART1 TXRDY1(送信レディ)                             |
|-----|-------------------------------------------------|
| IR2 | クロック同期シリアル I/O チャネル 1 送受信完了                     |
| IR1 | タイマーカウンターチャネル 3/外部端子 CN2-15 又は J1-B24 又は CN7-44 |
| IRO | タイマーカウンターチャネル 2/外部端子 CN2-13 又は J1-B25 又は CN7-41 |

#### 割込みモードの初期化

#### S C R 1 (1Ch)

| ピット | "0"                       | "1"                          |
|-----|---------------------------|------------------------------|
| D7  | IR5=外部端子 CN2-15 又は J1-B24 | IR5=UART1 ブレーク信号検出/エラー検      |
|     | 又はCN7-44                  | 出                            |
| D6  | IR2=外部端子 CN2-13 又は J1-B25 | IR2=クロック同期シリアル I/O チャネル 1 送受 |
|     | 又はCN7-41                  | 信完了                          |
| D5  | IR1=外部端子 CN2−15 又は J1−B24 | IR1=タイマーカウンターチャネル 3          |
|     | 又はCN7-44                  |                              |
| D4  | IRO=外部端子 CN2-13 又は J1-B25 | IRO=タイマーカウンターチャネル 2          |
|     | 又はCN7-41                  |                              |
| D3  | IR15=外部端子 J1-B21 IRQ7 又は  | IR15=外部端子 J1-B21 IRQ7 又は     |
|     | RTC-ALM 信号を反転せず入力         | RTC-ALM 信号を反転して入力            |
| D2  | 外部端子 J1-B23 IRQ5 又は       | 外部端子 J1-B23 IRQ5 又は RTC-TINT |
|     | RTC-TINT 信号を反転せず入力        | 信号を反転して入力                    |
| D1  | IR1=外部端子 CN2-15 又は J1-B24 | IR1=外部端子 CN2−15 又は J1−B24 又  |
|     | 又は CN7-44 信号を反転せず入力       | はCN7-44信号を反転して入力             |
| DO  | IR2=外部端子 CN2-13 又は J1-B25 | IR2=外部端子 CN2-13 又は J1-B25 又  |
|     | 又は CN7-41 信号を反転せず入力       | はCN7-41信号を反転して入力             |

注) 詳細は KL5C80A16CFP ハードウェアマニュアル 12-2 章参照

#### 内蔵パラレルポートの設定

IRO, IR1, IR14, IR15 の割込みを外部端子入力から行う場合 内蔵パラレルポートの方向性を入力に設定する必要があります。 ポート2の方向制御レジスタ 3Dhに "xxxx0000" を書き込みます。

#### プログラミングの要点

#### スタックポインタ

スタックポインタは書き込みできるアドレスを指定します。

リセット直後は全アドレスROM領域に設定されますので割込み発生時、現プログラムカウンターをスタックポインターに書き込めません。

したがって割込みが受け付けられません。

割込みルーチンの最後は必RETI命令を実行して下さい。 レベル/エッジの指定 リセット直後は全ビット、レベル割込みモードになります。 レベルモードではタイマーカウンターの割込みは受け付けられません。 詳細は KL5C80A16CFP ハードウェアマニュアル (赤い表紙) の第6章を参照下さい。 又、サンプルプログラムも併せてご参照下さい。

#### 17. RTCカレンダクロック (オプション)

#### I /Oアドレスマッピング

|       |                | BANK 0        | BANK 1        |
|-------|----------------|---------------|---------------|
| 0040h | RTC カレンタ゛ークロック | 1 秒桁レジスタ      | 1 秒桁レジスタ      |
| 0041h | RTC カレンタ゛ークロック | 10 秒桁レジスタ     | 10 秒桁レジスタ     |
| 0042h | RTC カレンタ゛ークロック | 1分析レジスタ       | 1分析レジスタ       |
| 0043h | RTC カレンタ゛ークロック | 10 分桁レジスタ     | 10 分桁レジスタ     |
| 0044h | RTC カレンタ゛ークロック | 1 時桁レジスタ      | 1 時桁レジスタ      |
| 0045h | RTC カレンタ゛ークロック | 10 時桁レジスタ     | 10 時桁レジスタ     |
| 0046h | RTC カレンタ゛ークロック | 1 日桁レジスタ      | 1 日桁レジスタ      |
| 0047h | RTC カレンタ゛ークロック | 10 日桁レジスタ     | 10 日桁レジスタ     |
| 0048h | RTC カレンタ゛ークロック | 1月桁レジスタ       | 1月桁レジスタ       |
| 0049h | RTC カレンタ゛ークロック | 10月桁レジスタ      | 10月桁レジスタ      |
| 004Ah | RTC カレンタ゛ークロック | 1年桁レジスタ       | 曜日レジスタ        |
| 004Bh | RTC カレンタ゛ークロック | 10 年桁レジスタ     | 指定範囲レジスタ      |
| 004Ch | RTC カレンタ゛ークロック | 曜日レジスタ        | テストレジスタ       |
| 004Dh | RTC カレンタ゛ークロック | コントロールレシ゛スタ D | コントロールレシ゛スタ D |
| 004Eh | RTC カレンタ゛ークロック | コントロールレシ、スタ E | コントロールレジ、スタ E |
| 004Fh | RTC カレンタ゛ークロック | コントロールレシ゛スタ F | コントロールレシ、スタ F |

RTCカレンダークロックについてはセイコーエプソン社の RTC63423A のデータシートをご参照下さい。

必要でありましたらお申しつけ頂ければコピーをお送りします。

#### ARM機能

RTC63423Aの機能として、日付時刻一致でARM信号を発生させることが出来ます。ALMが発生するとALM信号のオープンドレインがオンになります。これを応用すれば、電源オフのバッテリーバックアップモードで日付時刻の一致で電源投入させることもできます。(但し電源投入の場合は外部回路が若干必要です)。

#### 日付時刻一致

は最小は秒の一致から最大は秒、分、月、週の一致まで 設定できます

#### MPCZ-16EX

#### TINT機能

RTC63423Aの機能として定周期割込みを発生させることが出来ます。 定周期設定範囲

1/1024 秒, 1/128 秒, 1/64 秒, 1/16 秒, 1/2 秒, 1 秒, 1 分, 10 分

#### 18. 外部パラレル I / O

#### I/Oアドレスマッピング

| I/0アト・レス | 内容              | READ時       | WRITE時      | 外部端子      |
|----------|-----------------|-------------|-------------|-----------|
| 0050h    | パラレル I/0 基本部    | PAO~PA7 データ | PAO~PA7 データ | CN7-1~8   |
| 0051h    | パラレル I/0 基本部    | PBO~PB7 データ | PBO~PB7 データ | CN7-9~16  |
| 0052h    | パラレル I/0 基本部    | PCO~PC7 データ | PCO~PC7 データ | CN7-17~24 |
| 0053h    | パラレル I/0 基本部    |             | コントロールレシ゛スタ |           |
| 0054h    | 空き              |             |             |           |
| 0055h    | 空き              |             |             |           |
| 0056h    | 空き              |             |             |           |
| 0057h    | 空き              |             |             |           |
| 0058h    | パラレル I/O オプション部 | PAO~PA7 データ | PAO~PA7 データ | CN7-25~32 |
| 0059h    | パラレル I/0 オプション部 | PBO~PB7 データ | PB0~PB7 データ | CN7-33~40 |
| 005Ah    | パラレル I/0 オプション部 | PCO~PC7 データ | PCO~PC7 データ | CN7-41~48 |
| 005Bh    | パラレル I/0 オプション部 |             | コントロールレシ゛スタ |           |

パラレル入出力ポートのご使用に当たっては  $\mu$  PD71055 (NEC) のデーターシートをご参照下さい。併せてサンプルプルグラムもご参照下さい お申しつけ頂ければコピーを送付します。

#### $\mu$ PD 7 1 0 5 5

入出力レベル: CMOS読書き時間: 200ns

高レベル入力電圧 : 2. 2V (min) VDD+3V (max) 低レベル入力電圧 : -0. 5V (min) 0. 8V (max) 高レベル出力電圧 : Ioh -400  $\mu$  A 0. 7×VDD 低レベル出力電圧 : Iol 2. 5mA 0. 4V

#### 19. ADコンバータ

I/Oアドレスマッピング

| I/0アト・レス | ライト時                       | リード時  |
|----------|----------------------------|-------|
| 30h      | 送信データ                      | 受信データ |
| 31h      | モード/コマンド                   | ステータス |
| 38h bit0 | *チップセレクト *CS               |       |
| 3fh bit7 | RS232C イネーブル(adc マイナス電源供給) |       |

#### 初期設定

クロック同期シリアル I /Oのモード設定

モードレジスタ (31h)への設定

31h=11110000B 16bit clock , MSB first , 内部クロック

パラレル I/0 のビットセット

39h=01h 38hのビット0を"1"にセットしチップセレクトを解除します。

39h=00h 38hのビット0を"0"にセットしチップセレクトを0Nにします。

39h=7fh 3fhのビット7を"1"にセットし、RS232Cをイネーブル

にします。これはRS232Cのドライバーからマイナス

電源を貰っているためです。

チップセレクトはDAコンバータも同時に ON になります。

これで初期設定は終わりました。

使い方(クロック同期シリアルポートを16クロックモードで使う時の例) 制御バイト(書込み)

MSB LSB

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0 |
|----|----|----|----|----|----|---|----|----|----|----|----|----|----|----|---|
| 0  | 0  | 0  | 0  | 0  | 0  | 0 | ST | SE | SE | SE | U/ | S/ | PD | PD | 0 |
|    |    |    |    |    |    |   |    | L2 | L1 | LO | В  | D  | 1  | 0  |   |

ST=スタートヒット "1"

SEL2~SEL0=チャネル番号

U/B= U:ユニポーラ B:バイポーラ

S/D= S:シングルエンド変換 D:デファレンシャル変換(差動)

PD1~PD0=クロックパワーダウンモードの設定

変換データ (読み込みデータ)

MSB LSB

| 15  | 14  | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3 | 2 | 1 | 0 |
|-----|-----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|
| B11 | B10 | В9 | В8 | В7 | B6 | В5 | B4 | В3 | B2 | B1 | В0 | 0 | 0 | 0 | 0 |

実際のご使用は KL5C80A16CFP ハードウエアマニュアル (赤い表紙) の 10 章、「クロック同期シリアル I / O」及びサンプルプログラム、MAX 1 2 0 2 データーシート及びサンプルプログラムをご参照下さい。

#### MPCZ-16EX-ADC12 ご使用上の注意

本 AD コンバータのマイナス電源は MAX223 (RS232C ドライバー) の-10V 電源 を使用しております。もし、RS232C インターフェース側で-10V 電源を低下させる要因 (例えば信号と GND 間をショートさせる等) が発生した場合、本 AD コンバータのデーターにも異常が起こることがありますのですご注意下さい。 但し、MAX223 の-10V 電源にはかなり余裕がありますので通常の使い方で電圧 低下が発生することはありません。

#### 20. DAコンバータ

I/Oアドレスマッピング

| I/0アト・レス | ライト時         | リード時  |
|----------|--------------|-------|
| 32h      | 送信データ        | 受信データ |
| 33h      | モード/コマンド     | ステータス |
| 38h bit0 | *チップセレクト *CS |       |

#### 初期設定

CPU 内蔵パラレル I/O の方向設定

3FH=10001111B シリアルデータ OUT TXS1 を出力方向に設定

3BH=11001111B シリアルクロック OUT SCK1 を出力方向に設定

SCR4の設定

SCR4 = xxxx01xx TXS1, SCK1 を有効に

クロック同期シリアル I/Oのモード設定(アクセス時毎回必要)

モードレジスタ (33h)への設定

33h=11110000B 16bit clock , MSB first , 内部クロック

パラレル I/0 のビットセット

P00 39h=01h 38hのt゙ット0を"1"にセットしチップセレクトを解除します。

P00 39h=00h 38hのビット0を"0"にセットしチップセレクトを 0Nにします。

外部リファレンスを使用される場合は CN1-20 番が入力端子です、この時ボ

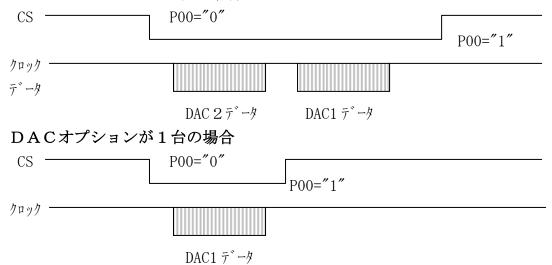
ード上の D1 LT1004-2.5CZ をニッパー等で取り外して下さい。

これで初期設定は終わりました。

#### 注意

DAC のアクセスが終了したら、チップ セレクトオフ直後 、DAC の入力クロックを"0"に抑えてください。

モードレジスタ (33h)への設定


33h=11110010B 16bit clock , MSB first , 内部クロック, SST=1

但し、ADC が実装されていない場合はいれてもいれなくても結構です

実際のご使用は KL5C80A16CFP ハードウエアマニュアル (赤い表紙) の 10 章、「クロック同期シリアル I /O」及びサンプルプログラム、MAX 539データーシートをご参照下さい。

#### 使い方の要点

#### DACオプションが2台の場合



#### ご使用上の注意

- ◎DAC 出力範囲は 0V~VCC-0. 4V となっております。CPU ボードへの供給電源 電圧 が、5.000V のときは最大 4.60V までの出力となります。
- ◎ リファレンス電源 LT1004-2.5CZ(リニアテクノロジー)は MIN2.480V、TYP2.500、MAX2.52V となっております。高精度のリファレンスが必要な場合は外部リファレンスをご使用下さい。

#### 21. DIPスイッチ、LED

| I/07ドレス | ライト時 | リード時    |
|---------|------|---------|
| 5Ch     | LED  | DIPスイッチ |

#### DIPスイッチ

基板実装面のS1の1~8の状態を読み込みます。

| DIP-SW 番号 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|-----------|----|----|----|----|----|----|----|----|
| リート゛テ゛ータ  | DO | D1 | D2 | D3 | D4 | D5 | D6 | D7 |

#### L E D

書き込みデータをLEDに表示させます。

| LED 番号 | LED1 | LED2 | LED3 | LED4 | LED5 | LED6 | LED7 | LED8 |
|--------|------|------|------|------|------|------|------|------|
| 書込みデータ | DO   | D1   | D2   | D3   | D4   | D5   | D6   | D7   |

注9 LED の番号と DIP スイッチの番号が反対になっていますので注意してください

#### 22. ウオッチドッグタイマー

MPCZ-16EX は CPU チップ 内蔵のウオッチドッグタイマーとは別に、 MAX691A のウオッチドッグタイマー機能を使用することが出来ます。 DIP スイッチ S3-1 を ON にすると MAX691A は 1.6 秒のタイムアウトカウンターを動作させます。 1.6 秒の間に DIP-SW リード命令 IN A, (005Ch) が実行されれば、タイムアウトカウンターはクリアーされ、再び 1.6 秒カウントを実行します。 1.6 秒の間に DIP-SW リード命令 IN A, (005Ch) が実行されない場合は、カウンターが 1.6 秒になったときリセット信号が 200m-sec の間 ON になります。

#### 付録

#### デバッガー用の端子

・バグファインダー

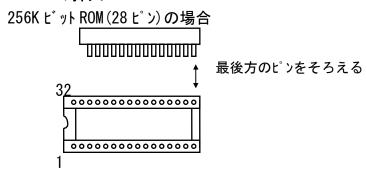
バグファインダー用の端子として、GND, CLK, BFSIO 信号が端子 に出ております。

CN6-1: CLK、CN6-2: GND、CN6-3: BFSIO バグファインダ使用時は DIP スイッチ S3-2 (BFMOD) を ON にして下さい。 バグファインダ未使用時は DIP スイッチ S3-2 (BFMOD) を必ず OFF にして下さい

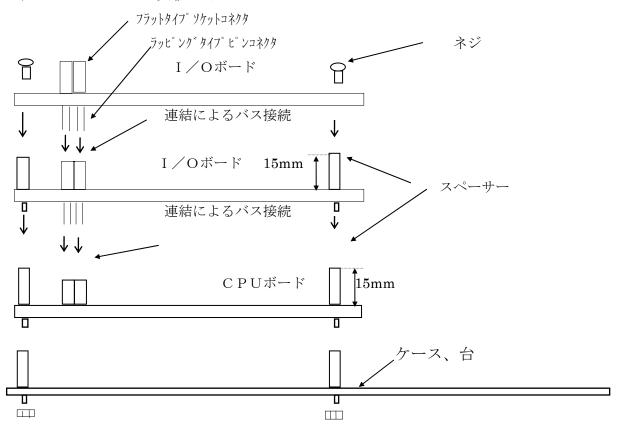
・ROMエミュレーター

ROM エミュレーターが用の端子として、RESET、NMI、GND 信号が端子に出ております

NMI: NMI, GND: GND, RST: RESET


## <u>注意) NMI 信号を使用する時は CPU の SCR3 レジスタ D7=1, D6=0 に設定してください MPCZ-16CPUとI/Oボードの結合</u>

MPCZ-16EX は CPU のバス信号を  $64 \, \mathrm{t}^\circ$  ンのコネクタに取り出しております。 このコネクタピン配置は P C 1 O 4 バスに準拠しており、弊社の P C 1 O 4 シリーズ I / Oボードとの接続ができます。


PC104バスはISAバスを64ピンと40ピンのヘッダーピンコネクタに変換したもので、ISAバスの信号がそのままヘッダーピンに取り出されております。但し、MPCZ-16EX には 40 ピ ンコネクタを実装しておりませんので、ISA パスの一部信号が使用できません。

PC104バスはバックプレーンボードを使用せず、ボードを積み重ねていくだけでシステムが構築でき、振動の多い場所やスペースが狭小な場所に適しております。また、カードエッジコネクタに比べピン接触面の信頼性が格段に向上されております

## ROMの挿入



## I/Oボードとの接続方法



ld

#### 初めてお使いの方の為に基本設定サンプルプログラム

当ボードを初めてお使いの方のためのソフトウエアの設定例を以下に記します。 よくある質問から選んでサンプルとしました。

```
リセット直後の状態から
     a, 1fh
                      ;メモリーマップの定義
١d
     (06h).a
                      : 0000 \sim 7 \text{fffh} = \text{rom} \quad 8000 \text{h} \sim \text{ffffh} = \text{sram}
out
١d
     sp. 0
                      ;スタックポインタアドレスは必ず定義して下さい
                 SCR0=設定不要
ld
     a, 00110000B
     (1ch), a
                ; SCR1=CPU 内部ポートをボード仕様に設定
out
١d
     a, 11110001B
     (1dh), a
out
                ;SCR2=CPU 内部ポートをボード仕様に設定
     a. 10000000B ; MNI を有効にする
Ιd
                ; SCR3=CPU 内部ポートをボード仕様に設定
     (1eh), a
out
ld
     a, 01000111B
out
    (1fh), a
            ;SCR4=CPU 内部ポートをボード仕様に設定
                 I/0=2wait , ROM=1wait , SRAM=1wait
;******* cpu ボードに実装の 8255 互換パラレル i/o の使用例 *********
                ;bc レジスタにパラレル i/o の control アドレスをセット
ld
     bc, 0053h
                ia.b.cポート全部出力、モード0
ld
     a, 80h
out
     (c), a
                ;パラレル i/o の control データセット(16 ビットアドレスデコードの為
                 bc レジスタ を利用する)
     bc, 0050h ; bc レジスタイニパラレル i/o-ポ-ト 0 のデータをセット
ld
ld
     a, 0ffh
                ;パラレル i/o ポート 0 出力データ "FF"をセット
out
     (c), a
                ;パラレル i/o のポート 0 にデータをセット
;SCR3 のビット 7 に"1"をセットする
ld
    a.10000000B ;MNI を有効にする
out (1eh), a ; SCR3=CPU 内部ポートをボード仕様に設定
```

a, 0xxxxxxxB ;x は任意、ビット 7 を"0 (入力モード) にセット

out (3dh), a ;ポート 2 の方向制御レジスタイニセット

のソフト設定で、ROM=32kb SRAM=32KBのメモリー空間が確保され、CPU 内蔵のタイマーカウンター、割込み、シリアルポート等が使えるようになりました。

又、パラレル i/o の使用例で 16 ビットアドレスデコードの使用方法も分かりました。 DAC の使用例では DAC に電圧を出力することが出来ました。

これ以降のプログラムはサンプルソフトや個々の I/O、CPU のマニュアルをご参照ください。

#### ・ご使用上のお願い

#### 故障について

万一故障が発生しました場合、弊社出荷日から1ヶ年以内は初期障害 として無償で修理致します。(但し、操作の間違い、故意によるもの についてはこの限りではありません)

出荷日から1年以上経過したものにつきましては有償修理となります。 免責について

万一当製品について故障が発生した場合の損害については、当製品の交換までが弊社の責任とさせて頂きます。それ以上の損害につきまして は弊社は一切責任を負いかねますのであしからずご了承お願い申し上 げます。

#### 無断複製の禁止

当ボードの無断複製を禁止します。

#### MPCZ-16EX

#### MPCZ-16EX

株式会社エンベデッドテクノロジー 〒578-0946 大阪府東大阪市瓜生堂3-8-13 奥田ビル

TEL: 06-6224-1137 FAX: 06-6224-1138